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Synthetic Studies on Pyrrolizidine Alkaloids. 
1. (±)-Heliotridine and (±)-Retronecine 
via Intramolecular Dienophile Transfer 

Sir: 

The pyrrolizidine alkaloids constitute an exceptionally large 
class of naturally occurring materials which have attracted the 
attention of synthetic organic chemists with increasing fre­
quency in recent years.1 The large number of such naturally 
occurring alkaloids, their deceptively simple structural fea­
tures, and a remarkable range and potency of biological effects 
have all served to make these materials unusually attractive 
synthetic targets. Particularly intriguing are the changes in 
biological activity which accompany relatively minor modifi­
cations in structure. Thus, indicine TV-oxide2 [1, an oxidized 
trachelanthic acid ester of retronecine (2)] shows extremely 
promising antitumor activity, while the very similar heliotrine 

[3, an ester of heliotridine (4)] is an established carcinogen. 
Although considerable progress has been made recently, by 

a number of groups,3 in developing synthetic approaches to 
somewhat simpler, less oxidized pyrrolizidines, little progress 
has been described toward more complex examples such as 
heliotridine and retronecine. Presently we report the synthesis 
of retronecine and heliotridine by a route which relies heavily 
on the previously described intramolecular dienophile transfer 
technique4 to simultaneously form one key carbon nitrogen 
bond (N-C8, pyrrolizidine numbering), establish the Aii2 
double bond, and functionalize C3 appropriately for eventual 
formation of the N-C3 bond. 

The known,5 readily available acetylenic ester 5, upon ad­
dition to 1.2 equiv of lithium divinylcuprate at —78 0C in tet-
rahydrofuran, reaction at —78 0C for 4.25 h, and quenching 
with methanol (—78 0C), affords, after dilution with ether, 
filtration through Florisil, and normal extractive workup, diene 
ester 6 as a single isomer in quantitative yield: 1H NMR (90 
MHz, CDCl3) 5 6.42 (dd, J= 18, 10 Hz, 1 H, C4 vinyl), 5.93 
(s, 1 H, C2 vinyl), 5.80 (d, 1 H, J = 18 Hz, C5 vinyl), 5.40 (d, 
1 H, J = 10 Hz, C5 vinyl), 4.83 (s, 2 H, CH2), 4.69 (br s, 1 H, 
OCHO), 3.72 (s, 3 H, OCHj), 4.00-3.33 (m, 4 H, CH2O), 
1.59 (m, 4 H, CH2CH2); mass spectrum (CI, methane) m/e 
227. Ester 6 was reduced (2.0 equiv of /Bu2AlH in ether, 0 0C, 
0.25 h) to dienol 7, which was oxidized with excess active 
manganese dioxide8 in benzene containing anhydrous Celite 
(23 0C, 48 h) to afford the labile dienal 8, used immediately 
in the subsequent step after filtration and concentration under 
reduced pressure. 

Addition of aldehyde 8 to a cold (-78 0C) solution of the 
lithium enolate4 of 9 (prepared by addition of 9 to 1.1 equiv of 
lithium diisopropylamide in 4:1 THF-hexamethylphospho-
ramide at -78 0C), followed by warming to -25 0C over 45 
min, quenching (—25 0C) with methanol, and normal ex­
tractive workup, cleanly afforded alcohol 10 [IR (film, partial) 
3400 (br), 1650 (br); NMR (90 MHz, CDCl3, partial) 5 
7.87-7.18 (m, 8 H, aromatic), 6.20 (dd, J = 18, 11 Hz, 1 H, 
CZZ=CH2), 5.54 (d, / = 9 Hz, 1 H, vinyl), 5.33 (d, J = 18 Hz, 
1 H, CH=CTZ2), 5.03 (d, 1 H, / = 11 Hz, CH=CZZ2), 4.79 
(br q, J = 6 Hz, 1 H, methine), 2.69 (s, 3 H, CH3), 2.44 (d, J 
= 6 Hz, 2 H, CH2C=O), 2.15 (s, 3 H, CH3)] which was 
readily converted10 (tert-butyldimethylchlorosilane, imidazole, 
dimethylformamide, 23 °C, 12 h) into its terf-butyldimeth-
ylsilyl ether derivative 11. This key intermediate, formed in 
64% overall yield from 7 after purification by column (M PLC) 
chromatography,9 now contains all carbons and the nitrogen 
destined to appear in the final alkaloid products, as well as 
differentially protected hydroxyl moieties destined to appear 
at C7 and C9. 
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Intramolecular transfer of the acylnitroso dienophile was 
cleanly effected essentially as previously described4 by ther­
molysis (benzene, 80 0C, 4.5 h) of 11 to afford (86% after 
purification by MPLC9) the 1,2-oxazine derivative 12.11'12 

Reductive cleavage of the nitrogen-oxygen bond in 12 was very 
cleanly effected without interference from other potentially 
sensitive functionality by reaction13 with excess 6% sodium 
amalgam (dry ethanol, 4 equiv of Na2HPC^, 0 0C, 5 h) to 
afford hydroxylactam 13 (Rf 0.125 vs. 0.58 for 12, 8% 
methanol-chloroform) in 90% isolated yield after purification 
by filtration through a short silica gel column. Conversion of 
this material into 2 and 4 clearly requires two operations which 
are interrelated: reductive removal of the lactam carbonyl and 
ring closure to form the N-C3 bond (pyrrolizidine numbering). 
These seemingly routine operations are in fact considerably 
more difficult than a cursory examination might suggest. 
Reduction of the amide function in 13 is not easily accom­
plished directly owing to the lability of other functionality in 
13 under vigorous reduction conditions. Activation of the allylic 
alcohol in 13 followed by base-induced intramolecular alkyl-
ation is frustrated by several significant problems, including 
a geometry for SN2 attack which precludes normal allylic 
activation, the lability of the /3-silyloxyamide under conditions 

which allow for deprotonation at carbon, and a significant 
amount of strain in the resulting ring-closed product. Although 
some progress has been made in our laboratories toward a so­
lution involving initial reduction of 13, the synthesis was 
completed most expeditiously as follows. Hydroxylactam 13 
was converted (2 equiv each of methanesulfonyl chloride and 
triethylamine, CH2Cl2, 0

 0C, 5 min) into the corresponding 
mesylate 14, which, after extractive workup and drying but 
without purification, was added (as a tetrahydrofuran solution, 
~0.2 M) to 1.0 equiv of lithium diisopropylamide in tetrahy­
drofuran (0.065 M) at -78 0C. Warming to 23 0C over 1.5 
h and reaction at 23 0C for a further 2.5 h afforded, after pu­
rification by MPLC,9 the easily separable bicyclic lactams 15 
and 16 (Rj9 0.27 and 0.15, respectively, in 35% THF-hexanes) 
in 50% overall yield from 12.14 A tentative assignment of ste­
reochemistry proved possible from the 100-MHz 1H NMR 
spectra16 of 15 and 16, which was confirmed by conversion into 
(±)-heliotridine and (i)-retronecine, respectively. Further 
reactions were conducted using each isomer separately. 

Removal of the protecting groups in 15 was accomplished 
by methanolysis of the tetrahydropyranyl ether (reflux, 3 h) 
catalyzed by pyridinium p-toluenesulfonate,17 followed by 
reaction with 2.0 equiv of tetra-iV-butylammonium fluoride10 

(THF, 23 0C, 5 min) to afford dihydroxylactam 17 (Rf 0.14 
vs. 0.69 for 15, 8% methanol-chloroform) in essentially 
quantitative yield. Reduction with lithium aluminum hydride 
(5.0 molar equiv) in refluxing tetrahydrofuran for 4 h then 
gave, after quenching with sodium sulfate decahydrate-Celite, 
filtration (washing with tetrahydrofuran containing ~10% 
triethylamine), and evaporation, (i)-heliotridine, whose 
identity and purity were firmly established by direct spectro­
scopic (1H NMR, 13C NMR) comparisons with natural ma­
terial. Acetylation (excess acetic anhydride in pyridine) fur­
nished the corresponding diacetate, which was likewise spec-
troscopically and chromatographically18 (TLC, VPC) identical 
with the diacetate prepared from natural material. 

A parallel sequence with bicyclic lactam 16 furnished, via 
the intermediacy of dihydroxylactam 18, (±)-retronecine, 
whose identity was confirmed by direct spectral and chroma­
tographic comparisons with natural material as outlined 
above. 

The differentially protected diol intermediates in the syn­
thetic approach outlined herein would appear to be ideally 
suited for eventual conversion into various ester derivatives of 
2 and 4 with high biological activity, such as indicine iV-oxide 
(1). Efforts in this regard are in progress in our laboratories 
and will be reported in due course. 
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Four-Carbon Photochemical Annelation of 
Alkenes with 2,2,6-Trimethyl-l,3-dioxolenone 

Sir: 

We report here a new four-carbon annelation sequence 
which utilizes the [2 + 2] photochemical cycloaddition of 
2,2,6-trimethyl-l,3-dioxolenone (1) to alkenes as the key 
carbon-carbon bond-forming step. Subsequent mild reduction 
of the cyclobutane photoproducts followed by aldol cyclization 
provides remarkably easy access to a variety of cyclohexenones. 
Compound 1, prepared in high yield from diketene and acetone 
by the method of Carroll and Bader,2 can be regarded as the 
covalently restricted cis enol tautomer of an ester of acetoacetic 
acid. Because /3-keto esters have been shown to be reluctant 
partners in [2 + 2] photoadditions to alkenes,3 this study as­
sumed additional interest. 

Table I. 

Alkene 

I 
2 

O 
7 

T 
9 

12 

Y 
IS 

11 

Cyclohexenones from 2,2,6-Trimethyl-l,3-dioxolenone 

Cyclohexenone(s) 

;5d 
6 

a5° 
8 

11 

Ii iX 

11 19 

21 23 

/A 
' ' 2» 

Yield 

hv 

90 

98 

100 

86 

9'i 

82 

88 

Z* 
b enone 

76 

64 

63 

80 

83 

85 

85 

r a t i o 

19:1 

8:1 

1:1.6 

1:5 

>19:1 

" Yields of purified products, not optimized. b Combined yield for 
the two-step conversion (reduction, aldol cyclization) of photoproducts 
to cyclohexenones.c Ratio (H-H/H-T) of photoproducts, and thus 
cyclohexenones, as determined by a combination of chromatographic 
and spectroscopic techniques. d Note 11 . ' Note 12. f Note 14. * Note 
15. h Note 20. 'Note 21. J Note 24. * Note 25. 'Note 26. 

The reaction between 1 and tetramethylethylene is illus­
trative. Irradiation (Hanovia 450-W lamp; Corex filter) of a 
hexane solution of 1 and TME for 24 h yielded the cyclobutane 
photoadduct 3 in 90% yield.4'5 Similarly cyclohexene yielded 
the corresponding adduct in 98% yield, thus establishing the 
viability of the photocycloaddition step. Transformation of the 
photoproducts into cyclohexenones was accomplished in two 
steps. Controlled reduction of 3 with diisobutylaluminum 
hydride6 yielded keto aldehyde 5 (after spontaneous loss of 
acetone from hemiacetal 4 and retroaldol cyclobutanol frag­
mentation) which on direct exposure to aldol conditions af­
forded 5,5,6,6-tetramethylcyclohexenone (6) in 76% yield. 
Similar treatment of the cyclohexene photoadduct gave the 
trans-octalone 8 in 64% yield. 

W-OH 
CHO 

Xf 
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